

Collaboration a Proposed Path Forward

Deb Agarwal

DAAgarwal@lbl.gov

Lawrence Berkeley Laboratory

Evolution of Collaboration

- Distributed Collaboratory Experiment Environments
 - Remote access to instruments ALS, EM, NMR, Tokamak
 - Technology development electronic notebooks, security, multicast, etc
- DOE 2000
 - Technology development communication, security, shared spaces, logbooks, etc
 - Collaboratory pilots On-line instruments (MMC) and Shared resources (DCC)
- National Collaboratories Program
 - ➤ Technology development distributed computing, security, collaborative tools, portals, web services, data management, etc
 - Collaboratory pilots PPDG, ESG, NFC, and CMSC
 - Partnering among agencies
- Science of Collaboratories Program

Example - Advanced Light Source

Spectro-Microscopy Collaboratory

Univ. of Wisconsin

Network

Experiment Control Panel Evolution

Confentir

Remote Camera Control

taz.lbl.gov

Lessons Learned

- Collaboration takes effort and thus must
 - Provide a perceptible benefit to all participants
 - Fit with current work practices
 - Be accessible to the users
- Collaboration tools need to be used regularly (not on the shelf)
- Group must already have a strong need to collaborate
- Collaboration technology creates new paradigms of interaction
- Difficult to predict how a technology will be used by a particular group
- Support for asynchronous interaction important
- Sociology is a dominant factor

Today's Distributed Science Reality

- Collaborations include as many as 1000's of scientists
- Collaborators located all over the world
- Many users never visit the site
- Virtual organization involved in managing the resources
 - Include multiple sites and countries
 - Distributed data storage
 - Distributed compute resources
 - Shared resources
- No one site or group controls the computers users are accessing resources from
- High performance computing, networking, and data transfers are core capabilities

Experiments

Distributed Science Infrastructure in High Energy Physics

NSF Network for Earthquake Engineering Simulation

Hydrology Synthesis – CUAHSI/NSF

Science Has Become a Team Sport

Teams Sharing Data and Expertise

Systems Biology: "studying biological systems by systematically perturbing them (biologically, genetically or chemically); monitoring the gene, protein, and informational pathway responses; integrating these data; and ultimately formulating mathematical models that describe the structure of the system and its responses to individual perturbations" (Ideker et al., 2001 Annu, Rev. Genom. Hum. Genet. 2:343)

Konopka, 2004 ASM News 70:163

Emerging Collaboration Modes

- Synchronous/Meetings
 - Seminar
 - Tutorial
 - Presentation
 - Working group
 - Brainstorming
- Asynchronous/Shared work products
 - Document editing
 - Code development
 - Shared data
 - Web portal
 - Workflow
- Semi-synchronous
 - Chat/presence
 - Shared web spaces wikis
 - > E-mail, blogs, etc

Access Grid

Original design

- Support group-to-group interaction
- Enable spontaneous meetings
- Feeling of being down-the hall
- Well designed and debugged space
- Immersive audio and display
- Based on existing tools
- Dramatically improved launching and coordination
- Natural interaction between participants

Actual usage

- Supports group-to-group interaction
- Meetings are scheduled and tested
- Debugging of settings and technologies often required
- Immersive audio good video
- Community commitment and tolerance has been remarkably high

Issues

- Multicast has not been as reliable as had been hoped
- Difficult to pursue research and deployment with limited resources
- Robustness of the software has been an issue
- Community contributions to the code have been limited
- Ability to adopt external developments has been limited
- Documentation has not kept up with the latest versions and best practices
- Minimal tuning, feedback, and debugging tools
- Cybersecurity mechanisms have caused problems

Software Robustness and Support

- Thorough testing before release
- People dedicated to support function
- Issue tracking
- Consistent documentation
- Interoperability
- Tuning procedures and installation testing
- Tutorials
- User group
- Steering committee
- Need to pursue an infrastructure program providing these capabilities – coordinated internationally

Networking

- IP Multicast has not become reliable
- Cybersecurity issues will likely make it less reliable over time
- Peer-to-peer overlay networks have proven that reliable dissemination networks can be built
- Combination of multicast and peer-to-peer networking with continuous testing and reconfiguration is needed

Cybersecurity

- Collaborative tools are developed independent of operational cybersecurity considerations
 - Implications of site mechanisms
 - Protections from malicious code
 - Vulnerability testing
 - Interoperability with site cybersecurity mechanisms
- Typically there is a long process of debugging prototype deployments
 - Negotiating ports and protocols with each site's cybersecurity group
 - Debugging unexpected behaviors
 - Debugging security mechanisms
 - Identifying causes of performance problems

Threats

- Viruses
- Worms
- Malicious software downloads
- Spyware
- Stolen credentials
- Insider Threat
- Denial of service
- Root kits
- Session hijacking
- Agent hijacking
- Man-in-the-middle
- Network spoofing
- Back doors
- Exploitation of buffer overflows and other software flaws
- Phishing
- Audits / Policy / Compliance
- ?????

Example - Credential Theft

Widespread compromises

- Over 20++ sites
- Over 3000+ computers
- Unknown # of accounts
- Very similar to unresolved compromises from 2003

Common Modus Operandi

- Acquire legitimate username/password via keyboard sniffers and/or trojaned clients and servers
- Log into system as legitimate user and do reconnaissance
- Use "off the shelf" rootkits to acquire root
- Install sniffers and compromise services, modify ssh-keys
- Leverage data gathered to move to next system
- The largest compromises in recent memory (in terms of # hosts and sites)

Collaboration Tools and Cybersecurity

- Collaborative tools building trust relationships across sites
- Extensive cross-site communication
- Many ports and protocols employed high bandwidth
- Encrypted connections
- Multicast traffic difficult to police
- Servers need to be able to allow incoming connections
- Need to design cybersecurity considerations and coordination into the next generation of collaborative tools

Next Generation Capabilities

- Whiteboards
- Shared screens
- Shared visualizations
- Security
- Video improvements
- Audio improvements
- New collaboration paradigms!
- Need well defined methods for migrating these capabilities as they are developed into the system so they are maintained and available broadly

Proposed Path Forward

- Infrastructure development effort
 - Improved robustness and testing
 - Maintained documentation
 - Help desk (not just volunteer)
 - Tools for improved self-testing
 - Issue tracking
 - Interoperability with other systems
 - Strong community involvement
 - Well defined contribution model
 - Peer-to-peer overlay network to automatically adapt to lack of multicast
 - Internationally coordinated
- Research development effort
 - Next generation capabilities
 - Community involvement
 - Next generation paradigms
 - Beta tests with leading edge communities
 - Strong ties to user communities